Category Archives: Energy Efficiency

The Durabulb LED Lightbulb Delivers Improvements In Unexpected Places

Durable and lightbulb aren’t two words that usually come up in word association challenges, but in the case of the new Durabulb LED lightbulb, those two have been married together and it turns out, they play very well together.

durabulb

The central reason for the Durabulb to exist is the fact that lightbulbs are typically very fragile. Lighting Science, the company behind the Durabulb, wanted to build a product that would excel in all environments including those where a fragile glass bulb would not fare well or could pose a safety risk. Specifically, industrial applications, garages and areas with workers underneath that could be hit by glass if an overhead bulb were to shatter are perfect for the Durabulb.

Beyond just a parlor trick for niche lighting scenarios, the Durabulb’s durability brings some serious potential when it comes to shipping. Traditional glass bulbs are packaged in bulky cardboard packaging designed to prevent them from breaking during transit. This results in a rather inefficient shipping density.

durabulb

With the Durabulb being so rugged, none of that extra packaging is required, allowing it to be shipped in a much tighter formation and eliminating any possibility of breakage. The two sample bulbs that were shipped to me were just tossed into an envelope and dropped into the USPS.

Higher density shipments, less worry about breakage during transit, no need to “handle with care,” and no need for shipping materials that don’t actually add value to the customer in the first place makes for huge wins all around when it comes to moving these things around the world.

At first, a durable lightbulb may seem like a minor innovation beyond the traditional glass bulb…until you unpack all of the benefits that the consumer doesn’t typically have to think about and you realize that the Durabulb represents a step change improvement in lighting while providing the same look and feel from a bulb that consumers have grown accustomed to.

durabulbFor me, I’m excited to get a few of these to put in the rooms where my kids play so I don’t have to worry anymore about them throwing something into a light ever again.

Check out the Durabulb over at Lighting Science or head on over to Amazon to read some reviews and maybe pick up a few.

Images credit: Kyle Field | CleanTechnica

If you’re looking to buy a new Tesla, feel free to use my referral link (here) to save $1,000, which is the only discount offered on new Tesla vehicles.

Leveraging Technology To Settle The Climate Change Debate

Originally posted on CleanTechnica

The Backstory

Climate change is a challenge unlike any other ever faced by humanity. It is the slow creep of change starting as a result of actions taken by humanity, building industries that helped hoist us out of thousands of years of toil into decades of technology-enabled prosperity.

But that prosperity exacted a toll that amassed into a series of inconvenient realities that have begun to confront humanity in ways we never could have imagined. Further complicating an already unenviable scenario, the fortunes extracted from the earth were redirected on humanity to intentionally obfuscate the truth, to intentionally introduce doubt to the equation.

These “Merchants of Doubt” had vast funds at their disposal and leveraged past experience to skillfully muddy the waters of truth, converting millions over to the opposition. These factually challenged fellows fight for the old way. They fight for antiquated methods and gladly embrace the blindfolds that keep them in the dark.

The Problem

The great iron of the climate change challenge is that the solutions humanity needs to leverage to reduce emissions at a rate necessary to avert catastrophic climate change already exist. We can generate power in renewable, sustainable ways that are more than sufficient to provide for our current needs and even well into the future.

Electric personal transport, mass transit, and bulk commerce solutions exist and are already being deployed around the globe. Adding insult to injury, many of these technologies are cost competitive with legacy power generation and transportation solutions today, without government subsidies. Change, it turns out, is not easy.

Distilling the problem down to the core issues and pairing them up with respective potential solutions has already been done for many cities, states, and even whole nations.

The missing technological development is not, in fact, another clean technology. We don’t need another 10% efficiency improvement in photovoltaic solar panels or another 200 miles of range in electric cars or even lower-cost lithium-ion batteries for cheaper grid-scale battery installations.

The Solution

What we need is to get clear on the facts. As President Obama recently stated in an interview with Bill Maher, because of this obfuscation, “people have difficulty now just sorting out what’s true and what’s not.” With the explosion of social media over the last 5–10 years, the way people get their news … and the facts that it should contain … has radically changed.

Now, one zinger headline on a clickbait article or picture with a catchy caption can provide a critical mental linkage that reinforces a social or political bias subconsciously. What’s scary is that, as the 2016 US election proved, the facts don’t even matter too much. You read that right — it doesn’t matter if the article, headline, or picture is true.

We latch onto them and share them out to our friends and the echo chamber effect continues. Obama triaged the struggle to communicate the facts, asking “How do we create a space where truth gets eyeballs?” He closed the segment with the summary problem statement: “Let’s agree on facts then argue about means after that.”

Ultimately, this single item — developing and leveraging technology to communicate the facts to the public in a way that is universally accepted — is the largest challenge facing climate change. The day we can communicate truths and facts to the public in a way that’s meaningful and believable is the day the masses will start working in earnest to make the required changes to avert catastrophic climate change.

We already have the technical solutions we need to solve the problem. But it’s all for naught if the people don’t take action.

All images by Kyle Field | CleanTechnica

If you’re looking to buy a Tesla, feel free to use my referral link (here) to save $1,000, which is the only way to get a discount on a new Tesla.

Maxem Adds Intelligence To Residential Home Electric Systems

Originally published on Clean Technica

Transitions Now was founded by Jan-Willem Heinen with a very simple goal that is summed up on its homepage: “we build cleantech companies.” After a bit of research into Transitions Now and the companies operating within, I had seen enough to want to dig in a bit further, and seeing as how I was already planning to be in Amsterdam for a few days in July, I arranged for a visit to the office.

After a bit of searching and a fair amount of exploring the new city on bike (aka, getting lost), I found the offices tucked away in a modern neighborhood in northeastern Amsterdam. Stepping into the office, I could feel the excited energy of the place as if it were almost tangible. People buzzing around in all directions, huddled around desks, fervently working on the latest challenge or development … it was clear that progress was being made, the common goal was being moved forward.

I was primarily interested in the one startup underneath the Transitions Now banner, Cohere, and its flagship product, Maxem. Cohere was launched in 2011 as the brainchild of Jan-Willem Heinen, who saw a gap in the current EV charging offerings when it came to enabling homeowners to charge at home on the often current-limited home electricity grid connections that are typical in Europe.

maxem_grid_charges

A Connected, Intelligent Solution

Maxem is an end-to-end solution that revolves around a small piece of hardware that taps into the home electric box as well as key large power users in the home like EV chargers, the heat pump, home energy storage, and residential power generation units like solar or wind.

With all of this connectivity, the Maxem solution maximizes the synergies between the various systems with a focus on first measuring consumption and generation, then applying its intelligence to control the individual appliances on the home grid. The ultimate goal of Maxem is to help the electricity appliances in the home work together to reduce peak energy pricing costs, eliminate the need to pull power from the grid, and, ultimately, to reduce the carbon footprint of the home.

maxem_installed

Dynamic Scaling

Maxem speaks in kilowatt-hours as the universal language of energy and can dynamically scale the power consumption of these major consumption units to smooth out the power pulled by the home.

For example, if the EV is charging during the middle of the day, the power from the rooftop PV solar system can be directly funneled into the EV instead of pulling from the grid. In markets where net metering accommodations are not available or are not consumer friendly, keeping PV generation on site is a big benefit.

The system also dynamically balances home energy usage and EV charging draws to stay under max loads. When home energy usage drops, Maxem intelligently funnels the unused capacity to the EV and, conversely, will slow down EV charging if the home energy usage increases.

maxem_high_low_evcharging

The Dashboard

Underpinning the Maxem hardware is the brains of the operation, which the owner interacts with through a streamlined, modern software dashboard that shows with beautiful simplicity the work being done by the system. Key metrics include Solar Generation, Home Usage, EV Charger Usage, % Sustainable, and other key metrics.

For me, this is data that I pull manually and dump into my home energy tracking spreadsheet, so having an intelligent, beautiful system pull it for me would be a huge win. The metrics are all presented in a “single pane of glass” with obvious color coding that makes it clear how the home is performing vs. the ideal state.

Check out the very recently launched beta of the dashboard here (that actually went live when I was there!) to see what it looks and feels like.

maxem_dashboard

Availability, Pricing, etc.

The Maxem solution is currently available throughout Europe, with global deployments in the works. Due the hardware connectivity of the solution, each region is being assessed individually to ensure the tightest integration possible.

The solution is currently priced at €595, which includes installation by a certified professional. This is sure to be another challenge for the solution, as building a network of certified, trained installers takes time — though, on the upside, the solution install appears fairly straightforward and is something most electricians should be able to tackle.

Putting A Price On Home Energy Efficiency

Originally published on CleanTechnica

Buying a house is an exciting part of life, the start of a new chapter, and frankly…freakin’ scary! Typically that’s not because of any spooky creatures but because of the massive mortgage that people usually take on to afford one, the number of things that can go wrong, and unforeseen financial burdens that these ‘money pits’ can become.

Many of the financial pitfalls can be identified early on in the buying process as part of a quality home inspection, but there’s one big dirty secret that many homes have that is a bit harder to wrap your head around when buying a new place – energy. I’m not talking about the qi (or ch’i) of the house or anything like that, but literally about the energy used by the house on an annual basis in all forms – electricity, natural gas, propane, heating oil, solar, wind, solar thermal, geothermal, etc

Let’s back up a bit. Pretend you’re buying a new car. Do you check the window sticker to see what options it comes with? How about the fuel efficiency? Estimated cost to operate for a year? Me too! …and it’s the same for a house. We want to know which energy options it comes with. Does it use natural gas for heating? Have a high tech heat pump in the basement that is dirt cheap to own and operate?

Fuel efficiency similarly translates into energy intensity. You thought I was going to say energy efficiency there, right? The actual metric for putting data behind this is the amount of energy used per square foot of the house. Roll that up over the size of the house and the months of the year and you get the mega-metric – the total cost of energy to operate for a year.

Before cars kept track of fuel efficiency, knowing what miles-per-gallon your car got was irrelevant to the market – you don’t care what your car gets and the market doesn’t value it…and it’s the same thing with a home. You can invest $15k in solar panels, $10k in energy efficiency improvements, and $3k in a new heat pump, but you’re not going to see much of that money rolling back into the valuation of the house because people don’t speak that language yet.

We need to retrain our brains, and the market, to accurately value not just the cost of the house but the cost to run the house month to month. For example, let’s dig in to the numbers on two houses:

  • House A is $1000/month to buy for 1700 square feet, but costs $300/month for the electricity bill and another $150/month to heat it.
  • Across the street, House B is also $1000/month to buy for the same 1700 sq ft footprint, but due to the solar panels on the roof and the extra insulation in the walls, floors, and ceiling, only costs $50/mo for the heating bill, with no electric bill to speak of.

Obviously the second house is worth more, and is a better value for the same purchase price. But just how MUCH more does an energy bill that’s $400 lower (every month!) make the house worth? Backing up a bit, how do we even quantify the monthly cost of energy for a house?

Putting a price tag on the cost of energy is the first step in getting a handle on the value of residential renewables – such as solar – into the valuation of the house. That allows homeowners to see the month-to-month cost and quickly extrapolate the cost of energy over the life of the house (the long term cost of energy).

This could be accomplished by reapplying the concept of the Energy Star label on appliances:

home_energy_rating

Beyond just the base concept of putting a dollar value on, and an increased visibility of, the cost of energy, less efficient homes are actually more risky to banks. Think about it. In the example above, house A carries an energy bill of $450/month vs house B with just a $50/month bill. That’s an extra $400 of monthly debt on house A that will never go away for the homeowner.

That effectively takes the monthly payment for the house from $1000 to $1450 whereas House B is only going to cost $1050/month – a huge difference. One of my favorite sayings that I’ve heard about solar is that it takes a monthly liability (the monthly bill) and turns it into an asset (increased value of the house).

Homes with higher energy bills are riskier investments for banks, as the monthly energy cost is not taken into account when the home is financed. It’s essentially a highly variable chunk of debt (particularly in this era of increasing efficiency and solar) that the bank not only doesn’t know about, but doesn’t seem to care about.

In markets where the energy bill is a large percentage of the mortgage, this can play a large factor in whether a homeowner can actually afford the full cost of the home or not. Further, the variations in energy price can, and likely often do today, single-handedly sink the homeowner’s monthly budget and kick the loan into default.

Finally, these energy costs can be rolled up over the life of the loan as part of the purchasing process. House B might only cost $18k in energy costs over 30 years whereas house A would tip the scales at $162k!! Granted, not many people are interested in stepping back and looking at the total cost of energy over 30 years, but lifetime costs often paint a picture compelling enough to trigger small changes.

If we looked at energy costs this way more often, solar and energy efficiency would be much more likely to have increased value when the house hits the market. Markets value what is measured. We need to measure energy use and turn consumption into an easy to understand comparable metric – like MPG is for fuel efficiency.

Doing that will trigger banks and financial institutions to dig a bit deeper into the value of energy efficiency and residential power generation as a part of the lending process and overall risk assessment. If Energy Use Intensity is being looked at by financial institutions, services like Zillow will start reporting EUI, which completes the cycle back to the consumers.

Homeowners would have more incentive to invest in technologies that are better over the long run and often for the planet, such as making that $5k investment in more insulation, spending $300 on LED light bulbs, or $15k on solar. Homeowners can have the confidence that they are making an investment in the house and in a reduction in monthly operating costs over the life of the home, or at least of the product being installed. For LEDs, that’s just 22.6 years…what a ripoff :)